DNA sequence and functional analysis of homologous ARS elements of Saccharomyces cerevisiae and S. carlsbergensis.

نویسندگان

  • J F Theis
  • C Yang
  • C B Schaefer
  • C S Newlon
چکیده

ARS elements of Saccharomyces cerevisiae are the cis-acting sequences required for the initiation of chromosomal DNA replication. Comparisons of the DNA sequences of unrelated ARS elements from different regions of the genome have revealed no significant DNA sequence conservation. We have compared the sequences of seven pairs of homologous ARS elements from two Saccharomyces species, S. cerevisiae and S. carlsbergensis. In all but one case, the ARS308-ARS308(carl) pair, significant blocks of homology were detected. In the cases of ARS305, ARS307, and ARS309, previously identified functional elements were found to be conserved in their S. carlsbergensis homologs. Mutation of the conserved sequences in the S. carlsbergensis ARS elements revealed that the homologous sequences are required for function. These observations suggested that the sequences important for ARS function would be conserved in other ARS elements. Sequence comparisons aided in the identification of the essential matches to the ARS consensus sequence (ACS) of ARS304, ARS306, and ARS310(carl), though not of ARS310.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conservation of ARS elements and chromosomal DNA replication origins on chromosomes III of Saccharomyces cerevisiae and S. carlsbergensis.

DNA replication origins, specified by ARS elements in Saccharomyces cerevisiae, play an essential role in the stable transmission of chromosomes. Little is known about the evolution of ARS elements. We have isolated and characterized ARS elements from a chromosome III recovered from an alloploid Carlsberg brewing yeast that has diverged from its S. cerevisiae homeologue. The positions of seven ...

متن کامل

Completion of replication map of Saccharomyces cerevisiae chromosome III.

In Saccharomyces cerevisiae chromosomal DNA replication initiates at intervals of approximately 40 kb and depends upon the activity of autonomously replicating sequence (ARS) elements. The identification of ARS elements and analysis of their function as chromosomal replication origins requires the use of functional assays because they are not sufficiently similar to identify by DNA sequence ana...

متن کامل

DNA Replication in Yeast

The details of chromosome replication are better understood in the budding yeast, Saccharomyces cerevisiae, than in any other eukaryotic organism. cis-Acting replicator sequences required for chromosomal replication origin function were identified on the basis of their ability to promote the extrachromosomal maintenance of plasmids. These autonomously replicating sequence (ARS) elements have be...

متن کامل

A conserved sequence element is present around the transcription initiation site for RNA polymerase A in Saccharomycetoideae.

To identify DNA elements involved in the initiation of rRNA transcription in yeast we located the start site of the rRNA operon of Kluyveromyces lactis and Hansenula wingei, both members of the Saccharomycetoideae, by S1 nuclease analysis and determined the surrounding nucleotide sequences. Comparison of these sequences with those of Saccharomyces carlsbergensis, S. cerevisiae and S. rosei (all...

متن کامل

Structure, replication efficiency and fragility of yeast ARS elements.

DNA replication in eukaryotes initiates at specific sites known as origins of replication, or replicators. These replication origins occur throughout the genome, though the propensity of their occurrence depends on the type of organism. In eukaryotes, zones of initiation of replication spanning from about 100 to 50,000 base pairs have been reported. The characteristics of eukaryotic replication...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 152 3  شماره 

صفحات  -

تاریخ انتشار 1999